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impurity effects; the above values of q and P must 
thus be considered as upper limits. A small "nuclear" 
term found in the specific heat of ytterbium6 was at
tributed to impurities since the crystal structure of this 
metal is cubic and quadrupole interactions with the 
crystalline field are thus identically zero. 

1. INTRODUCTION 

AN interesting conclusion that has emerged from 
the study of phase transitions in lattice systems 

is that the nature of the singularities characterizing the 
transition point are chiefly dependent on the dimen
sionality of the lattice. Thus, one-dimensional systems 
(with finite ranged forces) show no transitions, while 
all two-dimensional Ising models (at least those with 
nearest-neighbor interactions) have logarithmically 
divergent specific heats at TV1"3 More strikingly, it has 
been shown that the ferromagnetic susceptibility of the 
Ising model diverges at the critical point as 

x(z>c/(r-r.)1+', (l.i) 
where 5 = f in two dimensions4 a n d 5 = J in three 

1 L. Onsager, Phys. Rev. 65, 117 (1944). 
2 R. M. F. Houtappel, Physica 16, 425 (1950); G. H. Wannier, 

Phys. Rev. 79, 357 (1950); I. Syozi, Progr. Theoret. Phys. 
(Kyoto) 6, 306 (1951). 

3 C. Domb, Advan. Phys. 9, Nos. 34 and 35 (1960). This is an 
important review of work on the Ising model. 

4 M. E. Fisher, Physica 25, 321 (1959). 
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dimensions.5-8 Approximate theories of the mean-field 
type always predict d = 0.z Intuitive considerations, 
however, do suggest that 5 (d) should decrease with 
dimension and approach this mean-field value as 
d —> oo. This line of thought is supported by the recent 
development9-11 of schemes for expanding the partition 
functions of interacting systems in inverse powers of a 
'coordination parameter' z which is probably best 
regarded as a measure of the range of the interaction.12-13 

5 C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A240, 
214 (1957). 

6 C. Domb and M. F. Sykes, J. Math. Phys. 2, 52 (1961). 
7 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961). 
8 For the Heisenberg model in three dimensions, the index 8 is 

apparently J, see C. Domb and M. F. Sykes, Phys. Rev. 128, 
168 (1962). 

9 R. Brout, Phys. Rev. 118, 1009 (1960); ibid. 122, 469 (1961). 
10 G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961). 
11 R. B. Stinchcombe, G. Horwitz, F. Englert, and R. Brout, 

Phys. Rev. 130, 155 (1963). 
i2 G. A. Baker, Jr., Phys. Rev. 126, 2071 (1962); ibid. 130, 1406 

(1963). 
13 A. F. J. Siegert (to be published) and in Statistical Physics, 

1962 Brandeis Lectures (W. A. Benjamin, Inc., New York, 1963). 
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The high-temperature expansions of the partition function Z and susceptibility x of the Ising model 
and the number of self-avoiding walks cn and polygons pn are obtained exactly up to the eleventh order 
(in "bonds" or "steps") for the general ^-dimensional simple hypercubical lattices. Exact expansions of 
InZ and x in powers of 1/q where q = 2d, and 1/cr where a = 2d— 1, for T>To are derived up to the fifth order. 
The zero-order terms are the Bragg-Williams and Bethe approximations, respectively. The Ising critical 
point is found to have the expansion 

ec^kTc/2dJ=\~q-l~l\q-*-^-*-2\~q~t~n?^q~s , 
45 15* 

while for self-avoiding walks 

p,= lim |c n | 1 /^-(r[ l - ( r - 2 -2a-- 3 - l la-- 4 -62(r- 5 ] . 
n—»°o 

Numerical extrapolation yields accurate estimates for 9C and fi when d = 2 to 6 and indicates that % diverges 
as (T-TC)-\.1+SW1 where 

3/8(<Qc-4,12,32±l,80±2,188=bl2,..- (d = 2,3--), 

and that cn~Anaixn (n—> oo) with 

l/a(d)~3, 6, 14db0.3, 32±1.5, 72±7,- • •. 
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In these 'high-density' expansion methods the leading 
term is the mean-field (Bragg-Williams) approximation. 
Higher order terms, however, become increasingly 
singular and it is fair to say that the validity and 
significance of this approach are not yet quite clear. 

A problem closely related to lattice statistics is that 
of the number, cn, and other properties of self-avoiding 
walks on lattices.14 Such walks are also of interest in 
their own right as a model of polymer molecules with 
' excluded-volume' and as a simple non-Markoffian 
process.15 I t has been proved16 that the limit 

M=lim|cw |1/W (1.2) 

exists but its exact value is not known for any non-
trivial lattice. Numerical extrapolations, however, yield 
estimates for /JL (which is the analog of the critical point) 
and indicate that 

cn~Ana\±n (n~-> oo), (1.3) 

where the index a [which is analogous to 8 in (1.1)] has 
the value § for all simple two-dimensional lattices and 
the value | in three dimensions.6'14-15'17 Heuristic 
arguments again suggest that a(d) decreases to zero 
(the Markoffian value) as d—> oo. 

To elucidate the general problem of dependence on 
dimensionality and coordination number, it seemed 
worthwhile to investigate the Ising model and self-
avoiding walks for lattices of dimensionality higher 
than three. The results of such a study are presented 
in this paper. Of course the behavior of model physical 
systems in four or more space-like dimensions is not 
directly relevant to comparison with experiment! We 
can hope, however, to gain theoretical insight into the 
general mechanism and nature of phase transitions. 
Indeed for the general ^-dimensional simple hyper-
cubical lattices which we have studied (d=2 corresponds 
to the plane-square lattice, d=3 to the simple cubic 
lattice) it proves possible to expand the Ising partition 
function and susceptibility above Tc in inverse powers 
of d, the coefficients being closed expressions in T. 
Similar expansions may also be derived for the 
generating functions for self-avoiding polygons and 
walks. More surprisingly one may also obtain (1/d) 
expansions for the critical temperature itself and for the 
walk limit /*. [These are given explicitly in Eqs. (5.18) 
and (5.28) to (5.30) below.] The zeroth order terms 
in these (1/^)-expansions are found to correspond to 
the Bragg-Williams approximation. On the other hand, 
if the expansions are made in the variable (1/V) where 
<r = 2d—l, the leading terms correspond to the Bethe 
approximation. 

To obtain these expansions we have calculated the 

14 M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959). 
15 M. E. Fisher and B. J. Hiley, J. Chem. Phys. 34, 1253 (1961). 
16 J. M. Hammersley, Proc. Cambridge Phil. Soc. 53, 642 (1957). 
17 M. F. Sykes, J. Chem. Phys. 39, 410 (1963). 

number of self-avoiding walks cn(d) for all d and for 
^ = 1 to 11, and the first eleven high-temperature 
expansion coefficients of the Ising susceptibility for all 
d (and corresponding terms for the partition function). 
Extrapolation of the numerical values of these coeffi
cients in the now standard ways6-7,15*18 yields accurate 
values of JJL and of the critical points for d up to six. 
Corresponding estimates for the indices a(d) and d(d) 
may then also be obtained. These indices are found to 
approach zero rapidly—apparently exponentially fast-— 
as d increases. (Unfortunately they do not seem to obey 
any obvious simple formula!) The behavior of the 
specific heats at the transition and the probability of a 
self-avoiding return to the origin can also be estimated. 

The arrangement of the paper is as follows. In Sec. 
2 the notation and formulation of the problems are 
summarized. The way in which the number of dimen
sions enter is described in Sec. 3, while the detailed 
enumeration problem is discussed in Sec. 4. Expressions 
valid for all d are given and numerical values are 
tabulated for d=2 to 6. In Sec. 5 these results are used 
to derive the expansions in (1/d) and (1/cr). The 
numerical extrapolations are described in Sec. 6 where 
estimates of the critical points, indices etc. are tabulated. 
Finally, the results are discussed briefly in Sec. 7. 

2. NOTATION AND FORMULATION 

We consider a ^-dimensional simple hypercubical 
lattice whose sites are given by the points r = (fi ,fv • -rd) 
where the integer coordinates r3- take all possible 
combinations of positive or negative values. (For a 
finite toroidal lattice of N= Ld sites the r4- are identified 
modulo L.) Each site has 

q=2d (2.1) 

nearest-neighbor sites corresponding to the d Cartesian 
axes of the lattice. The parameter q is thus the co
ordination number but, since we are considering only 
one class of lattices, it is tied to the dimensionality.19 

I t is convenient to define 

<r=q-l = 2d-l. (2.2) 

Self-Avoiding Walks 

Let Cn=cn(d) denote the number of distinct w-step 
walks starting at the origin and consisting only of 
nearest-neighbor steps which never visit the same 
lattice point twice and let (d) be the correspond
ing number of returns to the origin, i.e., self-avoiding 

18 J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 
(1963). 

19 It would clearly be desirable to investigate a wider class of 
^-dimensional lattices. A number of families of such lattices are 
known, see: E. S. Barnes, Acta Arithmetica 5, 57 (1958), E.-S. 
Barnes and G. E. Wall, J. Australian Math. Soc. 1, 47 (1959-60). 
In the first instance, however, it seems reasonable to consider 
only the simple hypercubical lattices which at least for low d are 
probably not seriously atypical. 
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walks which close on the last step thus forming a 
polygon. The number of distinct polygons per site of a 
large lattice20 is then given by 

pn^un/2n. (2.3) 

In the present case, of course, pn==un=0, if n is odd. 
To the leading order cn and un behave asymptotically 
as nn where the limit 

jLt=/z(rf)=lim|cw|1/w (2.4). 

is known to exist16 and be equal to21 lim|^2m|1/2m 

(w—> co) for d finite. I t is sometimes convenient to 
regard cn (and similarly un and pn) as the expansion 
coefficients of the generating function 

C W = l + I c / . (2.5) 

The asymptotic behavior of cn is then determined by the 
singularities of C(z) nearest to the origin. By (2.4) 
the dominant singularity is on the real positive axis at 

z = zc=l/n. (2.6) 

Ising Model 

We consider the Ising model for spin \ with nearest-
neighbor interactions only, specified by the Hamiltonian 

3 e = - / E SiSj-mHY.Si, (2.7) 

where Si= d=l, m is the magnetic moment per spin and 
H the magnetic field. The second sum runs over all N 
lattice sites and the first sum runs over all nearest-
neighbor pairs. To effect a fair comparison between 
different lattices the interaction energy per spin in the 
lowest energy state should be constant. This condition 
can be met by normalizing the 'exchange' energy / 
according to 

J = J(d) = J0/q = Jo/2d, (2.8) 

and holding Jo fixed. The corresponding dimensionless 
temperature variable is then 

6=kT/qJ = kT/Jo. (2.9) 

The partition function and susceptibility per spin in 
zero field ( # = 0) may be expanded at high temperatures 
most conveniently in terms of the variable 

*= tanh(J/ifer) = t a n h ( l / ^ ) . (2.10) 

20 Consider the total number of distinct w-sided polygons that 
can be traced out on a toroidal lattice olN~Ld sites when L>n. 
If this number is Pn(L) then pn~Pn(L)/Ld, which is independent 
of L for L>n since no polygon can loop the torus. Each distinct 
polygon can be traced in two directions starting from any one of 
its n vertices and so corresponds to In of the un self-avoiding 
returns to a fixed point. 

21 J. M. Hammersley, Proc. Cambridge Phil. Soc. 57/516 (1961). 

The expansions are 

1 
l n Z ( r ) = l i m — lnZN(T) 

= \n2+iq\nco$h(J/kT)+j: gnv" (2.11) 
n=3 

and 

x(r)= (m2Ar)[i+f: an**], (2.12) 
71=1 

where, as is well known,3 gn and an are the number of 
distinct graphs of n lines per site of the lattice22 con
structed according to the rules: 

(a) the lines of the graph lie on the nearest-neighbor 
bonds of the lattice and no more than one line may lie 
on any bond; 

(b) for the partition function each vertex of a graph 
must be even, i.e., the join of an even number of lines; 

(c) for the susceptibility there must be one odd 
vertex at the origin and one at some (any) other site. 
All other vertices must be even. 

The graphs contributing to gn thus consist of a polygon 
or a number of separated polygons or polygons touching 
at vertices but with no common bonds. Similarly, the 
contributions to an come from a chain of bonds connect
ing the origin to the second odd vertex (this chain 
forming a self-avoiding walk of n or less steps) together 
with separated or touching polygons. 

In zero field, ferromagnetic lattices ( / > 0 ) in two 
or more dimensions undergo a phase transition at the 
critical temperature Tc. (It might be remarked that 
this has only been proved rigorously for certain two-
dimensional lattices I) The transition point may be 
defined (for a ferromagnet) by the divergence of the 
susceptibility to + °o and hence by the divergence of 
the series (2.12) i.e.,23 

w = co( i )= l im|a n | 1 / n (2.13) 
n-*x> 

= l / » c = l / t a n h ( l / ^ c ) , 
so that 

0 c - l / ^ l n [ ( c o + l ) / ( c o - l ) ] . (2.14) 

Correspondingly, the asymptotic behavior of the 
coefficients an determines the nature of the singularity 
in x ( ^ ) at Tc. In two dimensions it is known rigorously1-3 

that 
co(2) = l + v 2 , 0C(2) = 0.567296- • •. (2.15) 

22 The phrase fper site of the lattice' implies that the total 
number of distinct graphs on a torus of N sites is expressed as a 
polynomial in N (which is always possible if the torus is sufficiently 
large that it cannot be looped by connected components of the 
graph considered) and that only the coefficient of N is retained. 
If the graph is connected this is the only nonzero coefficient but 
disconnected graphs yield higher powers. 

23 Strictly we should have here 'lim sup' rather than 'lim' but 
the expansion coefficients are found to be sufficiently regular that 
the two limits agree. 
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3. ENUMERATION IN d DIMENSIONS 

The general problem of enumerating the number of 
self-avoiding walks and polygons and of calculating the 
expansion coefficients gn and an has previously been 
considered in detail for two- and three-dimensional 
lattices.3-14'24'25 I t depends finally on the calculation of 
the values of the lattice constants* >u of the necessary 
nonreducible graphs of n or fewer lines. (The lattice 
constant of a particular connected graph is the number 
of distinct ways it can be embedded in the lattice per 
site of the lattice.20-22) 

The new feature of the present problem is that the 
dimensionality is larger than three and we wish to 
obtain results valid for arbitrary d. Fortunately, in the 
case of the simple hypercubical lattices this difficulty 
can be overcome as follows. Consider a self-avoiding 
walk of n steps. Iid>n the walk can extend at most into 
a subspace of n dimensions (each step being directed 
into a new dimension i.e., parallel to a new lattice 
axis). Some of the walks, however, will extend only into 
l = n—l, n—2, • • -3, 2, or 1 dimensions. Suppose cn,i is 
the number of n step (self-avoiding) walks in / dimen
sions which extend into the full /-dimensional space. 
The number of distinct ways such a walk could be 
embedded in a hypercubical lattice of higher dimension 

d is given by the binomial coefficient ( , J since this is 

just the number of ways of choosing a set of / dimensions 
from the total number d. Thus, the number of walks 
in d dimensions that extend into an /-dimensional sub-
space but not into one of the higher dimension is 

Summing over all the distinct possibilities Cnl\ 

U 
b 

1,2, • d yields 

Cn(d) = J^Cnl 
1=1 

(3.1) 

The calculation of cn(d) for all d is thus reduced to the 
evaluation of the n integral coefficients cni, 
Conversely, if the values of cn(d) are known for 
d— 1, 2, • • -n, the Eqs. (3.1) can be solved successively 
to yield thecni and, hence, cn(d) for d>n. 

By setting d=J(<7+l) or d=\q and expanding the 
binomial coefficients one may alternatively express 
cn(d) as a polynomial in a or q of degree n, namely, 

The above arguments may obviously be generalized 
to the case of graphs with closed loops. Thus, a closed 
walk of 2m steps can extend at most into m dimensions 
since for each step along a given axis there must be a 
complementary step parallel to the same axis but of 
opposite sense. Consequently, we have 

Z=2 
(3.3) 

where U2m,i is the number of closed walks of 2m steps 
in / dimensions which extend into all I dimensions. The 
lower limit is Z=2 since there are clearly no closed 
self-avoiding walks in one dimension. As before one 
also has 

U21 i(d)^Y,U«2m,t<Tt--
i=0 *=1 

(3.4) 

and similar expressions for the number of polygons 
p2m(d). 

As a simple example consider p^ the number of 
squares per site of the lattice. To describe a square from 
one of its corners we need (a) to choose the lattice site 
on which the corner resides, (b) to choose two ortho
gonal directions for the sides of the square which can 

be done in ( 0 ) ways, and (c) select one of the 2X2 

possible senses along the chosen axes. Since each square 
has four identical corners from which it might be 
described we conclude that 

(3.5) * ~ * X 2 X 2 m = V 2 

This result could have been found directly on the basis 
of the previous arguments, however, by observing that 
the number of self-avoiding returns of 4 steps on the 
plane-square lattice is simply u±{2) = 8 so that p*(2) 
= _/>4,2=i^4(2)=l from which (3.5) follows by the 
analog of (3.3). 

Similar arguments clearly apply to graphs like the 
simple 'figure eight' [see Fig. 1 (a)] 

pn,x=(r,s)8, r+s=n (3.6) 

and to more closely connected graphs of n lines which 

£ = 0 « = 1 

(3.2) 

The lower limit in the second sum is t— 1 (rather than 
/ = 0 ) since each binomial coefficient has a factor 
d=^q so that Cq

n0 must vanish. In general, however, 
Ca

no will not vanish, 

24 C. Domb and M. F. Sykes, Phil. Mag. 2, 733 (1957); C. 
Domb and M. E. Fisher,. Proc. Cambridge Phil. Soc. 54, 48 
(1958). 

25 M. F. Sykes, J. Math. Phys. 2, 52 (1961). 

FIG. 1. Connected 
graphs (a) simple figure 
eight; (b) tadpole; (c) 
dumbbell; (d) star figure 
eight, 

r s 
(a) 

(c) 

(b) 

CD 
r t 

(d) 
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can fill out fewer than \n dimensions. For example, the 
number of cubes (3-cubes) in d dimensions is simply 

^12,cube=( j • (3.7) 

On the other hand, the lattice constants for more open 
graphs like the 'tadpole' [[see Fig. 1(b)] 

pn,x= (r,s)T, r+s=n (3.8) 

and the 'dumbbell' [[see Fig. 1(c)] 

pn,x=(r,s9t)D, r+s+t=n (3.9) 

can be expressed in the forms (3.1) or (3.3) but with 
upper limits n—\r and n—|(H"0> respectively, 
(r, 2=4, 6, 8,- • •). For the important irreducible 'star 
figure eights' [see Fig. 1(d)] 

pn,x=(r,s,t)s, r+s+t=n (3.10) 

the corresponding upper limits are only %(r+s+t—l) 
= ^n—^ii all r, s, t are odd, or \{r-\-s-\-t— T) — \n—\ if 
r, s, t are even. (These are the only possibilities on the 
simple cubical lattices since r+s, s-\-t and t+r must 
clearly be even integers greater than 3.) 

Since the high-temperature expansion (2.11) for the 
Ising partition function involves only combinations of 
polygons, the same arguments show that the general 
coefficient g2m(d) may also be written in the forms 
(3.3) and (3.4), i.e., with upper limit m. Similarly, the 
susceptibility expansion coefficients an(d)y since they 
involve the open chain (or walk) of n steps, as well as 
closed configurations can be expressed as in (3.1) or as 
in (3.2) i.e., as a polynomial in a or q of degree n. The 
possibility of expanding the partition function and the 
susceptibility in powers of (l/tr) and (1/q) stem directly 
from this conclusion. 

4. CONFIGURATIONAL CALCULATIONS 

In this section we outline the way in which the 
coefficients pn, cn, gn, and an have been calculated for 
arbitrary d up to n= 11. The reader who is prepared to 
take the results on trust [see Eqs. (6), (10), (14), (19), 
(20), (23) to (25) and Tables I to V I ] and who is 
uninterested in the combinatorial details will lose little 
by omitting this section. 

The most difficult nonreducible lattice constant to 
calculate is probably pn the number of n-step polygons. 
We have used the method devised by Domb and 
Sykes.3'24 First, we calculate rn(d) the number of 
returns of a walk which is allowed to make all possible 
self-intersections. Then 

d 

rn(d) = Coefficient of 1 in [ £ fo+zr1)]* (4.1.) 

and. so 

r*>W-(2m), r2m(2) = (2m1 • (4-2) 
\m / \m / 

The recurrence relation 

rim(d+1) = E (2 /)(2
27)^-<> 0*) (4-3) 

and a similar one for r 2 w (d+2) in terms of r^m'id) 
follows easily from the generating function (4.1) and 
provides the simplest method of computing the r2m(^) 
for higher d. 

Second, we require qn(d) the numbers of n step 
returns with no immediate reversals (but other self-
intersection allowed). These may be calculated recur
sively from T2m(d) by the relation 

q2m(d)-2(d-l) 

= r,m(d) - £ (2f)<r*lq2(m-s) (d)- 2 (d-1)] (4.4) 

established by Domb and Fisher.24 The number of 
polygons (or self-avoiding returns) can now be derived 
by subtracting off the relatively few possible types of 
intersections included in the qn. The simplest of these 
consist of chains of lower order polygons touching at 
vertices and are reducible in terms of products of the 
qi (l<n). There remain a few nonreducible possibilities 
such as the star figure eights (](3.10) and Fig. 1(d)] . 
The appropriate reduction formulas as far as pio on a 
general 'loose-packed' lattice have been given explicitly 
by Sykes (see p . 311 of the review article by Domb.3) 

Fortunately, many of the irreducible lattice con
stants for the hypercubical lattices are zero because the 
fundamental stars pta^ (2,2,2)s and p%r= (2,2,2,2)s 
vanish (using the notation of Domb.3) These constants 
are nonzero, for example, on the body-centered cubic 
lattice. Thus, the only nonvanishing constant required 
to calculate p* to pio is the star (2,2,4)$. By the type of 
argument used to calculate p± in Eq. (3.5) it is not 
difficult to see that 

fc.= (2,2,4)*= 2 4 0 ) . (4.5) 

Alternatively, since from the results of the previous 
section, the constant cannot extend into a space of more 
than three dimensions, this formula could be written 
down from the known results for the plane square (d=2) 
and simple cubic (d=3) lattices.26 

In this way the values of p*{d) to pio(d) have been 
calculated numerically for d=2 to 8. The values for 
d— 2 to 5 suffice to calculate the binomial expansion 
coefficients in the analog of Eq. (3.3) and these may 
then be checked by the values for larger J. We obtain 

26 Tables of lattice constants for many two- and three-dimen
sional lattices are tabulated by Domb (Ref. 3), pp. 345-360. 
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TABLE I. Number of self-avoiding returns, un(d). explicit results for the nonzero gn are found to be 

n 

2 
4 
6 
8 
10 
12 
14 

d-=2 

4 
8 
24 
112 
560 
2976 

16 464 

3 

6 
24 
264 

3 312 
48 240 
762 096 

12 673 920 

4 

8 
48 
912 

22 944 
652 320 

5 

10 
80 

2160 
82 720 

3 737 120 

6 

12 
120 

4200 
216 720 

13 594 320 

/d\ *~U' 
f.-<o+M| 

©• 

[m addition to Eq. (3.5)] 

*-<*MS 

*-il M' X 
pw= 28( "2 )+2328fr 1+23136(^ 1+47616L (4.6) 

The corresponding numerical values of the returns 
un=2npn are given in Table I for d=2 to 6. The 
tabulated values U2(d) = 2d are, of course, purely 
conventional. The results for n—12 and 14 are taken 
from the known results for d=2 and 3 which extend 
to wis(2) = 94 016, ^i8(2) = 549 648, and uu(3) 
= 218 904 768.15'27 

To calculate the coefficients gn(d) for the partition 
function expansion we need, in addition to the polygons 
pn(d)j the contributions from separated and touching 
polygons. These may be reduced in terms of the pn 

and a few further stars. The general formulas up to 
^ = 1 0 have also been given by Sykes.28 In our case the 
only further stars required are 

^ a = ( 3 , l , 3 ) s = 2 r U l 2 ^ (4.7) 

and 

pn= (3,1,5)5= n(i)+288r)+768r ) , (4.8) 

pm= (3,l ,3,3) s=0( 2 ] + l 2 ( 3 ) + 3 2 u ) • (4-9) 

Although the last two of these have contributions from 
configurations which can arise only in four dimensions 
they are quite easy to calculate combinatorially since 
essentially one merely has to find the number of ways 
of placing a square 'flap' on the side of a hexagon 
(for pQk) or on the 'hinge' joining two similar flaps 
(for piob). The constant p7a can be calculated by either 
of the methods previously described for p^. The 

27 G. S. Rushbrooke and J. Eve, J. Math. Phys. 3, 185 (1962). 
28 Ref. 3 page 321. Our gn is denoted p(n). 

<V+m 3 +648U 

810= 1 2 r j + 1 9 4 4 r J + 2 2 3 0 4 ( y + 4 7 6 1 6 ^ (4.10) 

The configurational energy of the Ising lattice has the 
high-temperature expansion 

-u(T)/j=j:hnv% 
tt=l 

(4.11) 

where the coefficients hn(d) may be derived by differ
entiating the partition function (2.11) with respect to v 
and multiplying by (1 — v2). The numerical values of 

TABLE II . Coefficients hn(d) for the high-temperature expansion 
of the energy [see Eq. (4.11)]. 

n 

1 
3 
5 
7 
9 
11 
13 

d=2 

2 
4 
8 
24 
84 
328 
1372 

3 

3 
12 
120 
1368 

18 300 
268 728 

4 180 860 

4 

4 
24 
432 

10 512 
290 552 

5 

5 
40 

1040 
39 120 

1 746 760 

6 

6 
60 

2040 
104 040 

6 487 020 

the nonvanishing hn(d) are presented in Table I I for 
d = 2 to 6. The series hn(2) could be continued in
definitely by using Onsager's exact solution.1 The terms 
hn(3) are, of course, already known.3 

To calculate the number cn of open self-avoiding 
walks we follow Sykes and Fisher14,25 and use the 
counting theorem which expresses cn in terms of lower 
order walks, polygons, simple and star figure eights 
and dumbbells [see Eqs. (3.6) to (3.10)]. This is 
derived by adding a step in a ways to one end of an 
w-step self-avoiding walk thus forming either an (n+1)-
step walk, a tadpole, or a closed walk (polygon). In a 
similar way adding a step to the tail of a tadpole 
yields either a tadpole of higher order, a dumbbell, or a 
figure eight. Collecting terms yields the relations 

Cn—2aCn-l— <T2Cn-2+dnj « = 3 , 4, 5, • • • 

ci=a+l, c 2=<x(H-l) , (4.12) 
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where the 'correction coefficients' are 

n n 

+ 12Y,(r,s,t)s+un-.1—uny (4.13) 
n 

in which the sums are over all graphs of specified type 
with. r+s+t=n. 

For large n the most important lattice constants are 
the dumbbells, in particular the leading dumbbells 
(4, n—S, 4)D which extends at most into n—4, dimen
sions, and (6, n—10, 4)^ which extends into n— 5 
dimensions. For n>9 none of the other graphs extend 
as far. Consequently, we may write 

Wr— 4 

dn(d)=T,d„i2llH 
1=2 

(w£7) , (4.14) 

where the factor 2HI has been included for convenience 
in order to keep the coefficients relatively small. 
When n=4:, 5, or 6 the formula still applies but with 
upper limits 2, 2, and 3, respectively. (For any loose-
packed lattice we have d 3=0.) 

To illustrate the technique of calculating the dumb
bells and to obtain a result needed in the following 
section consider the dumbbell (4, n— 8, 4 ) D . I t can be 
described from either end and by (3.5) we have a factor 

I r.J for the number of ways of choosing the square. 

Onto one of the four corners of this square we may at
tach a self-avoiding walk of n—S steps (and hence of 
lower order) which, however, can only set out in 2d—2 
directions. On the last point of the walk we may fix the 
second square. If one side of this square is in the same 
direction as the last step, there are 2(d—l) possibilities 
for the plane of the square, but if the square is orthog
onal to the last step there are § (d— 1) (d— 2) X 2 X 2 dis
tinct possibilities making 2(d— l)2 in all. Collecting up 
factors we obtain 

(4 ,» -8 ,4 ) i> 

l4X2(d-
Cmr— 8 

• 1 ) — l i d -
Id 

l)2 (4.15) 

where 2* is the weighted sum of all those configurations 
of n or fewer lines which can be formed by the possible 
interactions or overlaps of the walk with either square, 
or of the squares with each other, etc. Since such 
configurations will have at least one extra closed loop 
of at least four steps they can extend at most into 
^—4—1(4) dimensions and, hence, are of order dn~6 or 
less. To corresponding order we may similarly replace 
c„_8 by 2d(2d-l)n-Q=qan-9. From (4.15) we thus 
derive for general n 

( 4 , » - 8 , 4 ) D = i g c r ^ { l - • ( 4 A ) + 0 [ l / ( ^ ] } 
( * £ 9 ) . 

FIG. 2. p10a and p^. 

(a) (b) 

An entirely parallel analysis yields 

(6,n-10,4:)D = qir*-*{l+O(l/<r)} , ( w ^ l l ) . (4.17) 

The factors q=2d are left in front for later convenience. 
For large n the complete enumeration of all the terms 

in 2* and their weights is difficult but for ^ = 1 1 (or 
even 12) it is accomplished quite easily by careful 
exhaustion of the possibilities. There are in fact rela
tively few realizable cases and the task is eased by 
first constructing the tadpole (4, n — 8 ) r . For ^ = 1 0 , for 
example, we need only the constants 

^ios and p9q (see Fig. 2) (4.18) 

which are easy to calculate directly. 
The most troublesome configurations are the higher 

order stars (r,s,t)s since these, being relatively more 
open, are more numerous than configurations like 
(4.18). At order n=ll the star (3,1,7)s niay be calcu
lated by placing a square flap on a polygon p% and 
subtracting off possible intersections. Along similar 
lines (5,1,5) s is obtained by considering all possible 
configurations of two hexagons hinged onto a common 
bond. (There are three 'space types' of hexagon, 
namely 'flat', 'bent' and 'twisted'!) Finally, (3,3,5)s 
can be calculated by careful drawing of all five-step 
'bridges' across the main diagonals of all types of 
hexagon. 

In total the numbers of nonzero lattice constants 
needed to order n=ll, in addition to the polygons, are 
1 of order seven, 2 of order eight, 4 of order nine, 9 of 
order ten, and 10 of order eleven. (These numbers 
include a few lattice constants needed only for the 
susceptibility; see below.) 

Collecting the relevant terms, after expressing each 
lattice constant in binomial form, yields the correction 
coefficients dn,i and, thence, by (4.12) the number of 
walks cn. To economize space only the coefficients 
dn,i are tabulated (in Table III) while the numerical 
values of the cn(d) for d—2 to 6 are given in Table IV. 

TABLE III. Values of the coefficients dni for calculating cn(d). 
See Eqs. (4.14) and (4.20). 

(4.16) 

n 

4 
5 
6 
7 
8 
9 
10 
11 

1 = 2 

-1 
1 

-3 
6 

-12 
40 

-33 
263 

3 

-4 
7 

-52 
167 

-605 
3671 

4 

-26 
64 

-941 
4261 

5 

1 
-219 
915 

6 

1 
40 

7 

1 
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TABLE IV. Number of self-avoiding walks, cn(d). 

A231 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

d=2 

4 
12 
36 
100 
284 
780 
2172 
5916 

16 268 
44 100 
120 292 

3 

6 
30 
150 
726 
3534 

16 926 
81390 
387 966 

1 853 886 
8 809 878 
41 934 150 

4 

8 
56 
392 
2696 

18 584 
127160 
871256 

5 946 200 
40 613 816 
276 750 536 

1 886 784 200 

5 

10 
90 
810 
7210 

64 250 
570 330 

5 065 530 
44 906 970 
398 227 610 

3 527 691 690 
31 255 491 850 

6 

12 
132 
1452 

15 852 
173 172 

1887 492 
20 578 452 
224 138 292 

2 441 606 532 
26 583 605 772 
289 455 960 492 

From (4.13), (4.16), and (4.17), it follows that the 
leading contributions to the correction coefficients are 

dni^^qa^+Aqa^+Oiqa^), (»£ 11). (4.19) 

By solving the recurrence relation (4.12) generally 
the walks are given explicitly in terms of the dn by 

*=4 
(4.20) 

The summation runs only from k = 4 since ^3=0. 
To calculate the susceptibility expansion coefficients 

an(d) we need the w-step self-avoiding walks (or chains) 
but, in addition, we need all dumbbells, single and 
'double-tailed' tadpoles, star figure eights etc., of order 
n, and combinations of similar connected graphs of 
lower order with one or more separated polygons. In 
analogy with the counting theorem (4.12) we may write 

an=2(ran-i—cr2an-2-\rbn, n=3, 4, 5,--* 

ai = H - l , a 2 =<r (H- l ) , (4.21) 

TABLE V. Values of the coefficients bni for calculating an(d). 
[See Eqs. (4.24) and (4.25).] 

n 

4 
5 
6 
7 
8 
9 
10 
11 

1 = 2 

-1 
0 

-2 
2 
0 
26 
59 
242 

3 

-4 
2 

-42 
97i 

-251* 
2979J 

4 

-26 
30| 

-837 
3077| 

5 

1 
-217 
654 

6 

1 
42 

7 

1 

where each new correction coefficient bn will be a 
weighted sum of closed lattice constants (i.e., graphs 
with (tails' will not appear). General rules for the lattice 
constants required and expressions for their weights 
have been found by Sykes.25 The leading terms for 
large d again come from dumbbells of order n but 
dumbbells of two lower orders also occur. Thus, in 

general, 

&n=8 £(r,s ,*)D+16 X) (r,s,t)D 
n n—1 

+ 8 E ( V , 0 D + - - - , (4.22) 
tt-2 

where the higher order terms are more closely 
connected.29 By (4.16) and (4.17) we then have, in 
analogy to (4.19), 

bn(d) = q<rn-5+6q<7n-*+0(q<jn-7), ( » £ 11). (4.23) 

The explicit detailed breakdown of the bn for n= 1 to 
9 have been published.30 The formulas for bio and bn 
follow from the rules given by Sykes.81 As before, we 
may write 

bn(d)=Z:bnl2H{(d), (4.24) 
Z=2 \ / / 

except that for w=4, 5, and 6 the upper limit should 
be 2, 2, and 3. Further, since 5 3=0, we also have 

n 

an(d)^qa-~1+j: bk(n+i~k)an~K (4.25) 

The coefficients bni are presented in Table V while the 
numerical values of an(d) for d= 2 to 6 will be found in 
Table VI. 

5. EXPANSIONS IN l/<r AND 1/q 

Partition Function 

The Be the approximation3 for an Ising lattice of 
coordination number q=a+l yields a transition at a 
critical point given by 

t anh( / /&r c ) = flc=l/(7. (5.1a) 

29 The coefficients 8, 16, 8 in Eq. (4.22) find their origin in the 
factor 8(l+z;)2 in Eq. (23) of Ref. 25. We are grateful to Dr. M. F. 
Sykes for confirming this point. 

30 Ref. 3, pp. 323-4. Our bn is denoted dn. 
31 We are indebted to Dr. M. F. Sykes for checking the detailed 

symbolic expressions for bio and bn. 
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TABLE VI. Expansion coefficients an{d) for the susceptibility (note: for n<$ an(d)~cn(d), see Table V). 

n 

5 
6 
7 
8 
9 
10 
11 

d=2 

276 
740 
1972 
5172 

13 492 
34 876 
89 764 

3 

3510 
16 710 
79 494 
375 174 

1 769 686 
8 306 862 
38 975 286 

4 

18 536 
126 536 
863 720 

5 873 768 
39 942 184 
271 009 112 

1 838 725 896 

5 

64 170 
568 970 

5 044 810 
44 649 930 
395 180 650 

3 494 051130 
30 893 156 970 

6 

173 052 
1 884 972 
20 532 252 
223 437 852 

2 431526 492 
26 447 593 812 
287 669 976 492 

In terms of the rescaled variable 

x=av = a ta,nh(J/kT), (5.1b) 

the Be the critical equation is simply xc=l. General 
considerations suggest that Bethe's approximation 
might be more accurate the higher the coordination 
number q and we may test this idea conveniently by 
re-expressing the true partition function in terms of the 
variable x. 

Now by Eqs. (2.11) and (4.10) we may write down 
the high-temperature expansion of the partition 
function in powers of v for general d. (Of course, we 
are considering only the simple hypercubical lat
tices.) By the argument of Sec. 3 the coefficient of 
v2m can be expanded as a polynomial in a of degree 

m. Thus, 

lnZ=ln2+§(H-l) In cosh(//&r) 

+ E » 2 ° E G ' m y , (5.2) 

where the coefficients Gc
mt follow directly from (4.10). 

On making the substitution v—x/cr, we thus obtain an 
expansion in powers of x in which the coefficient of 
x2m is a polynomial in inverse powers of a of degree 2m, 
the lowest order term, however, being of degree m. 
Regarding the series as a double series in x and (1/V) 
we may rearrange to obtain an expansion of the partition 
function in powers of (1/cr). (This rearrangement may, 
of course, be invalid in a region where the double series 
is not absolutely convergent.) Performing these manipu
lations we readily derive the result 

lnZ=ln2+HH-l) In cosh(J/kT) 

+-x4(i/o-)2+-x6(iA)3 

8 3 

/ 1 3 11 \ 
( — X* —X& +l-X8)(l/(7)4 

\ 8 4 16 / 

/ 1 7 2 \ 
+( — xQ-9-xs +12-*10) 

\ 3 8 5 / 

-G n 5 n \ 
+( -# 6 +13~xs -127-a;10+120*x12J(l/(r)6 

16 12 

+(9-xs +443-*10 H J(l/o-)7 

+(-15x8-422-*10 H |(1A)8 

+/_456lx10+...J(l/cr)9 

- ( 
+( S50-x10 + . . . )(l/o-)10 

• ) < 

+• (5.3) 
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which is correct to order x10 and to order (l/<r)5. (The asterisk on the coefficient of x12 in the (1/cr)6 term indicates 
that this value is an approximate estimate.) 

The first line of this formula, corresponding to (1/cr) —» 0, is just the result of the Be the approximation for 
T> Tc (x< 1). In as far as the truncated series in (1/a) is a good representation of InZ we are justified in concluding 
that the Bethe approximation becomes more accurate as a —> oo. I t is notable that the first correction term is of 
order (1/cr)2 rather than of order (1/a), If one sets (l/<r) = 1 one discovers that the coefficient of each power of x 
vanishes identically. This corresponds to the fact that the Bethe approximation is exact for the one dimensional 
linear chain (<r=l, g = 2 , d=l). 

Evidently the coefficient of (l/cr)p is a polynomial in x2 the term of lowest degree being xp for p even or xp+l for 
p odd, and that of highest degree being x2p. Although each coefficient is mere]y a finite polynomial in x and, hence, 
is a nonsingular function of T> it is clear that the series in (1/a) can only represent the partition function above 
the critical temperature TC) i.e., only for x<xc=xc(a). This suggests strongly that the series in (1/a) for fixed x 
is divergent if x is large enough. However, we will postpone further discussion of the convergence of (5.3). 

The mean-field or Bragg-Williams approximation3 is even less accurate than the Bethe approximation but is also 
expected to improve as the coordination number q increases. The Bragg-Williams critical point is given by 

kTc/qJ = 6c=l, (5.4) 

which suggests expressing the partition function in the variable 0 = (1/q tanh"1^) and considering an expansion in 
inverse powers of 6 and q [rather than in powers of x and (1/a)"]. From (5.3), or directly from (2.11) and (4.10), 
we then find the '(l/#)-expansion' 

\nZ=\n2+-0-2(l/q)+-#-*(l/q)2 

4 8 

+/_l^+V«Vl/0)a 

/ 11 11 \ 

\ 12 16 / 

/ 46 7 2 \ 
+ [ 2 - 0 - 6 - 1 7 - r 8 +12-d-10)(l/qy 

\ 90 24 5 / 

which is correct to order (1/q) J* (As before the asterisk 
indicates an approximate value.) 

As expected the term independent of q is the constant 
ln2 which is just the Bragg-Williams result above Tc 

(corresponding to a constant configurational energy and 
zero specific heat). Note, however, that the leading 
correction term is now of first order. 

The coefficient of (l/q)p is a polynomial in 6~2 of 
degree p but with leading term of order 6~(p+l) 

for p odd or 6~{p+2) for p even. As a function of T the 
coefficients are thus nonsingular to all orders (except 
for poles at T=0). If we put l/q—\ and regroup in 
powers of (1/6), we recapture the expansion of 
In cosh (1/26), the exact result for the linear chain. 
Similarly putting l / g = | and regrouping yields the 
expansion for the plane-square lattice which is known 
to converge up to 6rl=Bc-

l= 1.762 747- • • but to 
display a singularity of type (6~~6C)2 ln|0—0c | a t 0C.T 

/ 57 5) \ 
+ ( 5 6 - ^ 8 - 1 9 4 - r l o + 1 2 O * 0 - 1 2 )(l/q)Q 

\ 80 12 / 

+ • • • , (5.5) 

Self-Avoiding Walks 

I t is clear that we may perform parallel manipulations 
on the generating function for self-avoiding polygons. 
The resulting formulas, however, are not of special 
interest. Instead we consider now the generating 
function C(z) for self-avoiding walks [Eq. (2.5)]. The 
analog of the Bethe approximation for the excluded 
volume problem is the neglect of all self-intersections 
except those due to immediate reversals (or 'digons'). 
This yields the first-order approximation CnP^qa71"1 and 
hence, for the generating function, the approximation 

C(z)~l+qz+qaz2+qa2zH 

~ l + [ ^ / ( l " ^ ) ] . (5.6) 

This function has a simple pole at zc^ 1/a, which 
indicates that the first-order approximation for the 
walk limit is fic^a, corresponding to the Bethe critical 
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point (5.1a). In analogy with (5.1b) we may introduce 
the new variable 

y=az. (5.7) 

Since, by (3.2) the nth. coefficient in the expansion of 
C(z) in z is a polynomial in a of degree n, the coefficients 
in the expansion in y will be polynomials in inverse 
powers of a, the leading terms being constant. On 
regrouping we will obtain an expansion of C(z) in powers 
of (1/cr) in which we expect the zero order term to 
correspond to (5.6). 

I t is convenient to start with the expression (4.20). 
Multiplication by (a/q)zn followed by summation from 
n=l to oo yields 

a az 
- [ C ( * ) - l ] = -Y,Zdk(n-k+l)znan-k. (5.S 

1 — az q w=i &=4 

On writing z=y/a, interchanging the order of summa
tion and summing on j^n—k (assuming | y | < l ) we 
get 

a y 
- [ c ( 2 ) - i ] = — 
q 1 -

-+T.Wq^y - • (5.9) 
y &=4 (1 — y)2 

Using the expression (4.14) and the coefficients dni 
given in Table I I I we may expand each term {dk/qah^1) 
in inverse powers of a. Thus, 

di/qaz = ~~ cr~2+cr~~3 

db/qaA= 

d6/qa5= — 4a~l + 13(7-4 - 9 o - 5 

d10/q*9= o-4-244(7-5+2793o-6+ • • • 

dn/qa10= o-4+4(7-5 +420o- 6 + • • • (5.10) 

and by (4.19) the first two terms in dk/qa^1 remain 
unchanged for &^11. On collecting up terms in 1/cr 
and performing the infinite sums for the terms in 
(1/cr)4 and ( l /c) 5 , which yield extra factors (1—y)~l 

(for \y\ <1 ) , we finally obtain 

[c (yA)- i ] 

y yi 

— (l/V) 

r 3y If 1 
+f\ 1+ -. 

L (l-y) (l-yf-i 
(iA)3 

r 30/ If 
-yA 1-lly + 

' L (l-y) (1-y 

y i 
)» (l-y)8J 

r 310f 
-y* 9+40-y-llly2 

L (l-y) 
45/ 4 / 

^) 3 -
(iA)6+---

dA)4 

(5.11) 

As anticipated the term independent of a corresponds 
precisely to the first-order approximation (5.6) and 
has a simple pole at y= 1. The first correction term is of 
second order but has a double pole at y=l. The 
coefficient of (1/cr)™ has the form 

ym+1{ko+kiy+ • • -+kmy>»} (l-y)-1'1 •~[m/2] (5.12) 

(where [w~] denotes the integer part of w) and, hence, 
diverges increasingly strongly at y= 1 as m increases. 

Of course the fact that the expansion in (1/cr) 
diverges to all orders at y= 1 does not imply that 
C{y/a) has any singularity at y = l . Indeed the upper 
bound14 

/ i ( 2 ) 0 = 2 . 7 l 2 (5.13) 

for the plane-square lattice proves that C(y/a) is 
bounded and regular for y<a/v= 1.106 when cr=3. 
Generally, by considering walks in which only im
mediate reversals and square loops (4-step self-inter
sections) are forbidden, one may show32 that fjL(d)^v(d) 
where v(d) is the real positive root of 

• ( c r - l > 2 - ( c r - l > - - l = 0. (5.14) 

I t is easy to establish that a/v(d)^l+e(d) with 
e(d)>0 (for d< oo). This proves that C(y/a) is regular 
at y ~ 1 for all finite cr. The divergence of the expansion 
in (1/cr) at y = 1 is evidently a mere 'artifact' but it 
apparently prevents us from locating, even approxi
mately, the true singularity in C(y/a) and, thence, 
estimating ix(d). 

This difficulty can, however, be circumvented in the 
following manner. By re-expanding (5.11) in powers of 
y, or directly from (4.20) and the polynomials (5.10), 
we find that the number of walks for n^ll can be 
written 

(l/q)cn(d) = an-1[l- (n-3)a~2- (2n-13)a~" 

+ O 2 - 1 4 | H - 1 0 7 ) c r - 4 

+ (2w 2 -83^+895)cr - 5 +0(a- 6 ) ] , (5.15) 

where for n>no=no(m) the coefficient of a~~m will be a 
definite polynomial in n of degree \_^m~]. If, formally, we 
take the logarithm of this expression we find 

Inicn/q)— (n—1) lna— (n—3)a~2 

- (2n-l3)a~z- (ll^n-102±)a~* 

- (64^-856)o - 5 +0(o- 6 ) . (5.16) 

I t is remarkable that the terms in n2 have cancelled 
identically. I t seems probable, although we have as yet 
no proof, that this cancellation will continue in the 
general mth term [for ri>n§(m)~\ so that the logarithm 
will be formally linear in n to all orders. We may now 
use the definition (2.4) 

ln/x (d) = lim 1/n lnc n (d) (5.17) 

32 One must construct a recurrence relation for the number of 
walks divided into classes according to the least number of extra 
steps needed to complete a square. See the Appendix to Ref. 14. 
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to derive an expansion in powers of (1/a) for the limit 
/x, namely 

lnM(^) = lno—o-2-2(r-3-ll|cr-4-64(r-5+0(c7-6) 
(5.18a) 

or, taking exponentials, 

ju=(r[l-(7-2-2(7-3-lla-4-62o-5+0((7-6)]. (5.18b) 

The leading terms in these expressions correspond, 
as expected, to the first-order approximation ju=o\ 
The first correction term is again of second order and is 
negative confirming that C(y/a) is regular at y= 1 for 
l/o->0. The question of the convergence of (5.18) will 
be discussed later. 

Susceptibility 

Returning to the Ising model it is now clear how the 
susceptibility may be expanded in powers of (1/c). 
We start with the expression (4.25) for the expansion 
coefficients, multiply by vn and sum. The correction 
coefficients bn defined by (4.24) and Table V, are then 
expanded in powers of a. On making the substitution 
v=x/tr, rearranging and summing we finally obtain, in 
analogy with (5.11), 

a x 

( l - x ) 2 

2x 

~(1/V)2 

r Ix 
x\ 1 + — 

x5 

3x2 

x (1 — x)2J 

3Qx2 lOx3 

(1/cr)3 

+xb\ 14*4 

+x( 

(1-x) (1-x)2 (1-x)3 

340fx3 

(1A)4 

-10-26x+150x2+ 

bxb "l 6xl 

(5.19) 

(5.20) 

(1-x)2 (l-x): 

where the reduced susceptibility is 

^(kT/m2)X(T). 

The term independent of a yields 

x(T)~—\ 1+ = , (5.21) 
kTl 

which is the well-known Bethe approximation for the 
susceptibility3 (Firgau formula). This exhibits a simple 
pole at the Bethe critical point xc= 1 as is to be expected. 
The leading correction term is again second order but 
has a double pole. In general, the coefficient of (l/<r)m 

is of the form (5.12) (with x replacing y) and thus 
diverges at x= 1 as (1 — x)_1""lm/2]. As previously the 
divergence in all orders does not imply that the suscepti

bility diverges at x— 1. Indeed since generally14 

a>(d)=*l/vc^n(d), (5.22) 

the argument based on Eq. (5.14) shows that £(#) or 
x(T) is bounded and regular at x— 1 for all 1/V>0. 

To compare with the mean-field or Bragg-Williams 
approximation we carry the expansion one stage further 
as for the partition function. Writing for convenience, 

t=l/d=Jo/kT, (5.23) 

we obtain from (5.19) the (1/q) expansion of the 
susceptibility in the form 

(Jo/m2)x(T)^ 
1 - / (1-t)2 

— P 

(X/q) 

3 f 1 

.(1-0 (i-02 (i-0aJ 
(i/g)2 

+H 
21 If—3/2 

2\t 

(i-o d-o2 (i-ty 
i 

(l-04 (i/?)3 (5.24) 

where the exact terms to order (l/g)s follow from (5.19) 
but are omitted to save space. The term independent 
of q yields the mean-field result (Curie-Weiss law) 

<mf 

JoT-Tc 

Oo=Jo/kT0=l). (5.25) 

In this case, however, the leading correction term is of 
first order in (1/q). Furthermore, the divergence in each 
term, which now occurs at t= 1, is sharper than in the 
(l/o)-expansion. This arises merely from the expansion 
of the Bethe result (5.21) in powers of (1/q) which 
necessarily yields a pole of order (m+1) in the coeffi
cient of (l/g)m. 

To obtain expansions for the critical point we must 
again abandon the complete expansions and examine 
the expansion coefficients themselves. From (4.25), 
(4.24), the coefficients in Table V and the general 
expression (4.23), or by expanding (5.19), we find for 
n^ll 

an(d) = q<jn~l[l- (n-3)a~2~ (3»-17)cr» 
+ 0 2 - 1 7 ^ + 1 2 8 > - 4 

+ (3n2- 108^+1072f)o-5+O((7~6). (5.26) 

On taking the logarithm, formally, the terms in n2 

again cancel so that 

ln(an/q)~ (n— 1) lno— (n— 3)<r~2 

- (3n- 17)o-3- (14£»- 123i)o-4 

- (%2\n- 1021f )(r-5+0(o-6). (5.27) 
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Dividing by n and taking the limit n —> c© then yields 
by (2.13) 

lnco (d) = — In tanh (J/k Tc) 

= lno—a- 2 -3o- 3 -14 | (7- 4 

- 8 2 J ( 7 - 5 + 0 ( a - 6 ) , (5.28a) 

and, on taking exponentials, 

co -o - [ l - o - 2 -3o - 3 -14c r - 4 -79 | ( 7 - 5 ] . (5.28b) 

We have thus obtained an expansion for the critical 
point of the Ising problem, the zero order term being 
the result of the Bethe approximation. Comparison 
with the expansion (5.18) for the walk limit shows that 

(M-co)/<r= o - 3 +3o- 4 + 17io-"5+ • • • > 0 (5.29) 

in agreement with (5.22). I t is interesting that the 
fractional difference is only of third order in (1/a). 

By writing a~l—q~l(l-~q~l)~l and inverting the 
relation tanh(J r /^r c )=l /a> we can obtain a direct 
expansion for the critical temperature in powers of 1/q, 

34 14 
- 21—g"4~ 133—f-5 . (5.30) 

45 15 

The term independent of q is now the Bragg-Williams 
or mean-field result but the leading correction term is 
again of first order. 

We could alternatively have derived this last result 
directly from the (1/q) expansion (5.24) by calculating 
the coefficients fn(q) in the expansion 

(Jo/nPMV-i, fn(q)l"+K (5.31) 

I t is clear that fn(q) can be expanded in powers of 1/q. 
The coefficient of (l/q)m would now be a polynomial in 
n of degree m (for n sufficiently large) since the di
vergence of the (l/q)mkerm in (5.24) is (l-t)~m-1. On 
forming ln/n(<?) we would now find (at least to the 
fifth order in 1/q) that the terms in n2, nd, n4, and n5 

would all cancel leaving only linear terms. The critical 
temperature expansion (5.30) would then be derived 
formally from 

1 
l n 0 c = l i m - l n / n ( 0 ) . (5.32) 

There seems no reason to suppose that the cancellation 
of the higher powers of n in \nfn(q) will not continue 
indefinitely so that the form of the expansion (5.32) 
would remain the same to all orders. 

Convergence 

We cannot state any definite conclusions regarding 
the nature of the convergence of the (1/a) and (1/q) 
expansions derived above. The coefficients in the series 

(5.18), (5.28), and (5.30) for n, w, and 0C increase 
rapidly with n and at first sight the series appear 
unsuitable for numerical evaluation unless q is rather 
large. On general grounds one might expect the series 
to be only asymptotic.33 This is supported by the ratios 
of successive terms in (5.30) which are 

1, 1.3333, 3.2500, 5.0205, 6.1563, • • • . 

These increase roughly linearly with n in a fashion 
reminiscent of the ratios 

1, 2 , 3 , 4 , 5 , 6, - . . , 

derived from the well-known asymptotic series J2 n '#n-34 

If the series are asymptotic, truncation at the smallest 
term for given q should yield the optimum approxi
mation. This rule does indeed seem to apply. Thus, 
with 2 = 4 (d=2), the first three terms of (5.30) yield 

0c(2)c^O.59896, (m= 3) (5.33a) 

which is 5.6% larger than the exact result1 

0C(2) = O.5673O--- (exact). (5.33b) 

This error is about f of the fourth-order term which 
yields 

0C(2)~O.51398, ( w = 4 ) . (5.33c) 

In three dimensions (# = 6) we similarly obtain the 
approximation 

6>c(3)~0.75945, (w=4) (5.34a) 

which is only 1.03% higher than the best estimate 

#c(3)~0.75172, ('exact'), (5.34b) 

which is probably accurate to 1 part in 104 or better. 
The error is just under one half the fifth-order term 
which yields 

0C (3)^0.74222, ( w = 5 ) . (5.34c) 

The mean of (5.34a) and (5.34c) is accurate to 0 .1%. 
In four dimensions the fifth-order term is probably 

the smallest (although we do not know the next term). 
The corresponding estimate is 

0C(4)~O.8363, (w=5) (5.35a) 

the last term being about 0.5% of this value. In analogy 
with two and three dimensions, one would expect 
(5.35a) to be about 0.3% high which is confirmed by 
the estimate 

0C(4)~O.834O, ('exact') (5.35b) 

obtained from the series in the next section. For 
optimum accuracy in higher dimensions more terms are 

33 Thus, the expansions (5.15) and (5.26) should be accurate 
when no-'2 is small or l/a^Cl/n1'2. As n -> «> in (5.17) and (5.28), 
however, the range of convergence would seem to shrink to zero 
as would be expected if the limiting series where only asymptotic. 

34 The constant sign of the terms suggests, in any case, that 
there is a singularity on the real positive axis. If the series were 
asymptotic this would be at 1/er —0-K 
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required. The approximations for 6C(S) and 0C(6) must 
thus be expected to be some 0.1 to 0.2% high as is 
confirmed by the direct series estimates (see Table VII 
below). 

The (1/<T) expansions for 03(d) and for ix(d) behave in 
a very similar fashion. In all cases the error appears to 
be roughly one half the smallest term (see Table VII). 

The convergence of the (1/a) and (1/q) expansions 
for the susceptibility and partition function (and for 
the corresponding walk generating functions) is a 
rather different problem. For small enough x or t, i.e., 
high-enough temperatures, it seems likely that the 
series have a finite radius of convergence in \/<r and 
1/q. However, as (l/o) and (1/q) approach zero, we 
have found that the positions of the singularities in % 
and the partition function approach x = l and t=l 
(from above) which suggests that the series will have a 
zero radius of convergence if x^ 1 or t^ 1, respectively. 
This heuristic conclusion is supported by the divergence 
of each term in the susceptibility expansions at %— 1 
or t=l. The individual coefficients in the partition-
function expansion are well behaved at # = 1 or t—\ 
but we expect the free energy to have some singularity 
for all q (even if the specific heat is finite, see below) so 
that the argument still applies. 

6. NUMERICAL EXTRAPOLATIONS 

In this section we use the first eleven explicit coeffi
cients of the series expansions (Tables I, I I , IV, and 
VI) to estimate the Ising critical points 03(d) and 6c(d) 
and the self-avoiding walk limit n(d) for the hyper-
cubical lattices. Following the analyses of the two- and 
three-dimensional cases we study the ratios6'14,15 

03n~an/(ln~ly Vn—Cn/Cn-1 ( 6 . 1 ) 

as a function of \/n and the behavior of the related 
Pade approximants.7 '18 

At the same time, and more importantly, we will 
estimate the indices 8(d) and a(d) in the asymptotic 
relations 

x(T)~C/(T-Tey+', (T->TC+) (6.2a) 

a„«CWco», (» -»«>) (6.2b) 
and 

cn^AnajjLn, (n—» <») (6.3) 

which are observed to hold.6,14 In two and three dimen
sions we have6-15,17 8(2) = J, a(2) = i and 8(3) = 1, 
a(3) = -| (to quite high accuracy). Furthermore, these 
results have been found to be independent of the lattice 
structure for fixed dimension. We are confident that 
the same will be true in four and more dimensions so 
that it is sufficient to consider only the simple hyper-
cubical lattices.19 The only danger is that these lattices 
are not "typical" when d is large. Thus, for example, 
lattices are known for d=&, 12, and 16, with coordina
tion numbers 240, 756, and 2160, respectively, compared 

with merely 16,24, and 32 for the hyper cubical lattices.35 

Furthermore, the previous arguments suggest that 
until n>d the configurations counted by the coefficients 
do not "sample" the lattice fully in all its dimensions. 
For these reasons we have restricted our extrapolations 
to d=4, 5, and 6 this being sufficient, in any case, to 
exhibit the trend with increasing dimension. 

Since the extrapolation procedures are now standard 
and have been discussed in detail elsewhere6>7>u>n>ls we 
will give only an outline account. Examination of the 
ratios o)n(d) and fxn(d) on a plot versus \/n shows that, 
allowing for the odd-even alternation, they quite 
rapidly approach linearity as n —-» oo. One observes, 
however, a slight curvature which increases with 
dimensionality. This is almost totally removed by 
regarding the ratios as a function of l/nf-=l/(n—k) 
where k=%(d—3). The asymptotic forms for large 
nc^n' are, of course, not altered. Linear extrapolation 
of odd and even pairs of ratios to the 1 / V = 0 axis then 
yields first estimates for 03 and ji. For example, for self-
avoiding walks in four dimensions the last few intercepts 
are 6.7810, 6.7582, 6.7765, 6.7605, 6.7742, 6.7642, while 
successive means are 6.7696, 6.7674, 6.7685, 6.7674, 
and 6.7692. These indicate that the limit ^(4) is close 
to 6.768 and the corresponding slopes suggest that 
a(4)~0.071. This value is close to 1/14=0.07143 which 
index may be used to obtain from the modified ratios 
jun* = w'/*„/(w'+cO the refined estimate /*(4)~6.7680 
±0.0015. This, in turn, leads to a refined estimate for 
the index based on the sequence a„=n''(fxn—M)/M which 
yields a(4) = 0.0715±0.0010. 

The poles of the successive Pade approximants to 
(d/dz)\nC(z) indicate a value of 6.7677=b0.0010 for 
^(4). The corresponding residues are in the region 
l + a ( 4 ) ~ 1 . 0 7 3 in agreement with the analysis of the 
ratios. Removing the critical factor from the series for 
(d/dz) \nC(z) using /i (4)^^6.7680 and estimating a by 
direct evaluation of the approximants yields a (4) 
~0.0722±0.0010 again in satisfactory agreement. 

A similar procedure has been applied to the terms cn 

and an for the other dimensions. Generally we have 
found that with regular series such as these the ratio 
method is more sensitive, displays steadier trends and 
thus yields more accurate estimates. In a number of 
cases, notably the susceptibility series for d=4 many 
of the Pade approximants suffer from the defect of a 
"split singularity," i.e., an expected simple pole with 
residue R is represented as a pair of close but displaced 
poles with residues Ri and J£2 such that Rx+R2c^R. 
This behavior may be an indication of more complex 
analytic behavior in the true function but is also quite 
typical of the "noiseness" of the sequence of Pade 
approximants. Usually the estimates for a and 8 
obtained from the approximants are some 0.001 to 
0.002 higher than the series estimates. In absolute terms 

36 See H. S. M. Coxeter and J. A. Todd, Can. J. Math. 5, 384 
(1951) and the references quoted in footnote 19. 
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TABLE VII. Estimates for critical parameters. 

d 

MM 
M(ff)W 
tx/cr 
a(d) 
V«tf) 
«(<*) 
0M 
oeto(d) 

8(d) 
3/d(d) 

2 

2.6390 
2.5556 
0.8797 
0.333 

3 

2.414 214 
0.567 296 
0.598 96 
0.750 

4 

3 

4.6826 
4.6760 
0.9365 
0.166 

6 

4.5840 
0.751 72 
0.759 45 
0.250 

12 

4 

6.7680±0.0015 
6.7714 
0.9669 

0.0715±0.0010 
14=fc0.3 

6.7220±0.0015 
0.834 01 
0.836 30 

0.094± 0.0025 
32±1 

5 

8.8313±0.0020 
8.8397 
0.9813 

0.0310^0.0015 
32±1.5 

8.8072=1=0.0010 
0.876 94 
0.878 82 

0.0375=h 0.0010 
80=b2 

6 

10.8720=h0.0015 
10.8800 
0.9884 

0.0138=1=0.0015 
72=1=7 

10.8580=1=0.0015 
0.902 27 
0.903 31 

0.016=1=0.001 
188±12 

this is a rather small discrepancy but since a(d) and 
8(d) fall sharply as d increases the percentage un
certainties naturally increase. 

Our final best estimates for y,(d), a(d), oo(d), dc(d), 
and 8(d) are presented in Table VII. In all cases the 
values of y are consistent with the upper bounds 
derived from Eq. (5.14) and with the lower bounds 
which can be found by extending previous methods.14,36 

I t must be stressed, however, that the indicated un
certainties are not rigorous bounds but correspond to 
reasonable fitting limits. [The two- and three-dimen
sional results, which are not new, are given for complete
ness without any indication of uncertainty.] 

The row labelled fj,((x)(d) represents approximations 
to fx(d) computed from the (1/cr) expansion (5.18b) 
by retaining terms up to order (\/a)d plus one-half 
the term in (l/a)(d+1) [except for d=5 and 6 where all 
available terms are utilized]. Similarly, the row labelled 
6c

(q)(d) is calculated from the (1/q) expansion truncated 
after the term in (l/q)(d+1) except for d=5 and 6 where 
all terms are retained. As mentioned before, the 
asymptotic series estimates are quite close to the more 
accurate numerical estimates. 

In two and three dimensions the reciprocal indices 
l/a(d) and 3/8(d) appear to be exact integers. From 
Table VII it is plausible that this is true also for self-
avoiding walks in four dimensions where l / a ( 4 ) ~ 1 4 
but, unfortunately, the accuracy of the extrapolations 
is not sufficiently great to confirm such a conjecture 
in the other cases. I t is clear, however, that the indices 
are rapidly approaching zero as d increases. Indeed 
the sequences of ratios (for d= 2, 3, • • •) 

a(d)/a(d+l)~ 2.000, 2.333, 2.286, 2.25, ••• 

and 

8(d)/8(d+l) o±3.00, 2.67, 2.50, 2.35, ••• 

suggest that, for large d, the indices a{d) and 8(d) 
behave as l/\d with \ ~ 2 . 0 . In conformity with the 
inequality14 # (d) > oo (d) we also observe that a (d)< 8 (d) 
appears to hold generally. 

36 B. C. Rennie, Magy. Tud. Akad. Mat. Kuk. Inetz 6A, 263 
(1961)—generalizes the technique of Ref. 14 and obtains the lower 
bounds ^(4) £5.718,/*(rf)£2rf-lnrf+0(l) (d -> <*>). 

Since we have obtained accurate estimates for the 
limit i*(d), we may endeavor to determine the asymp
totic behavior of the number of self-avoiding returns,14,37 

i.e., the index £(d) in the expression21 

un(d)~Urr?ij,n ( » - > o o ) . (6.4) 

The ratios (un/un-?)ll2/ix will approach unity as n —-> <*> 
and are observed to do so almost linearly in 1/n. As 
before the slope yields an estimate for f. Unfortunately 
there are only four or five significant nonzero terms in 
higher dimensions and these are not very large numeri
cally. Consequently only limited accuracy is possible. 
We estimate tentatively that in d=2, 3, 4, ••• 
dimensions 

f(rf)~1.46, 1.75, 2.07, 2.38, 2.70, (6.5) 

To within the uncertainties of 0.01 to 0.03 these results 
are consistent with the formula 

f ( d ) ~ ( 4 d + l l ) / 1 3 . (6.6) 

The probability (Pw of an ^-step self-avoiding walk 
returning to the vicinity of the origin will vary as 
l/V*+f. The formula (6.6) thus suggests roughly that 
(Pw^l /^ ( 4 / 1 3 ) d + 1 when d is large compared with 
(Pn^l/n^ for unrestricted random walks. Firm 
conclusions on the value of £(d) for d ^ 4 , however, 
require further data. 

We may in similar fashion investigate the behavior 
of the specific heat of the Ising model in higher dimen
sions. In two dimensions we know that the specific heat 
diverges as1 

(rf=2) C(T)~D2\\n(T-Tc)\, (T->TC+) (6.7) 

while in three dimensions extrapolation of the results 
for the three cubic lattices3,38,39 suggests a sharper 
infinity, namely, 

(<*=3) c(r)«A/(r-rc)°-2
 (T->TC+). (6.8) 

Examination of the ratios (hn/hn-2)lf2/o) formed from 
the expansion of the energy (see Table II) suggests, 

37 M. F. Sykes and B. J. Hiley, J. Chem. Phys. 34, 1531 (1961). 
38 C. Domb and M. F. Sykes, Phvs. Rev. 108, 1415 (1957). 
39 M. E. Fisher, J. Math. Phys. 4, 278 (1963). 
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however, that in four and more dimensions the specific 
heat will approach a finite value as T approaches Tc 

from above. We expect 

(d£4) C(T)~CC-E(T~-TC)\ (T^TC+), (6.9) 

where the parameters Cc, E and rj depend on d. Tentative 
extrapolations indicate, for d =4, 5, and 6, 

q(<*)~0.17, 0.40, and 0.75, (6.10) 

but these values may well be too large. Appreciably 
more data is needed if more certain estimates are to be 
made. 

7. CONCLUSIONS 

By considering a sequence of lattices of dimension
ality d and coordination q=2d we have been able to 
obtain expansions in powers of (l/g) = §(l/d) f°r the 
critical points and other properties of the nearest-
neighbor Ising model of spin \ and for corresponding 
self-avoiding walks. It should be noted that the same 
principles can be used to obtain (1/d) -expansions for 
the Ising model of general spin and also for the Heisen-
berg model of general spin. In these cases detailed 
calculations are somewhat more involved since the 
weight associated with a given lattice constant is no 
longer so simple but the general nature of the results 
should be similar. (We hope to discuss these extensions 
in a future report.) 

The zeroth order terms in our expansions are the 
Bragg-Williams or mean-field results (or their analogs). 
This is also the case for Brout's 'high-density' or 
(1/z)-expansion.9-13 However, the specific heat remains 
analytic as T —> Tc+ to all orders in our expansions 
whereas in the (1/z) type expansions the first-order 
terms yield specific heat singularities at Tc.

n From our 
susceptibility expansions we were able to derive (1/d)-

expansions for the critical points: corresponding (1/z)-
expansions have not been derived. 

We feel that the present expansions should be viewed 
essentially as expansions for short-range forces in 
inverse dimensionality rather than in inverse coordina
tion number. Indeed similar results should be obtainable 
with other sequences of lattices in which the co
ordination numbers q have different dependences on d. 
The (l/z)-expansions, on the other hand, are probably 
best regarded as expansions in the inverse range of 
long-range forces for lattices of fixed dimension.12,13 

It is then a matter of interest that the zeroth order 
terms of both expansions agree but not surprising 
that higher terms differ. 

For short-range forces the dependence on dimension
ality seems to be of primary importance, coordination 
number and detailed lattice structure having only a 
secondary effect. This can be seen from the similarity 
of the 0C, <a/cr, and ix/a results for different lattices of 
fixed dimension and from the corresponding invariance 
of the indices 5 and a. The numerical extrapolations 
indicate that the 'classical' Bragg-Williams limit is 
approached quite rapidly as d increases although the 
singularities in the susceptibility and specific heat 
apparently remain monclassical' for all finite d. 
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